线性代数——相似矩阵和矩阵对角化

线性代数——相似矩阵和矩阵对角化

文章目录

相似矩阵矩阵的对角化对称矩阵的对角化对称阵A对角化的步骤

相似矩阵

设A,B都是n阶矩阵,若有可逆矩阵P,使

P

1

A

P

=

B

,

P^{-1}AP=B,

P−1AP=B,则称B是A的相似矩阵,或说矩阵A与B相似,对A进行运算

P

1

A

P

P^{-1}AP

P−1AP称为对A进行相似变换,可逆矩阵P称为把A变成B的相似变换矩阵。定理:若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值亦相同。 证明:|B-λE| = |P-1AP-P-1(λE)P| = |P-1(A-λE)P| = |P-1| |(A-λE)| |P| = |(A-λE)|推论:若n阶矩阵A与对角阵

Λ

=

[

λ

1

λ

2

λ

n

]

\Lambda=\begin{bmatrix} \lambda _1 & & & \\ & \lambda _2 & & \\ & & \ddots & \\ & & & \lambda _n \end{bmatrix}

Λ=⎣⎢⎢⎡​λ1​​λ2​​⋱​λn​​⎦⎥⎥⎤​相似,则λ1,λ2,…,λn即是A的n个特征值。 证明:因为λ1,λ2,…,λn是Λ的n个特征值,由上述定理知λ1,λ2,…,λn也是A的n个特征值。设A为n阶矩阵,则必有可逆阵P,使P-1AP = B,其中B是上三角矩阵。

矩阵的对角化

对n阶矩阵A,寻求相似变换矩阵P,使P-1AP = Λ为对角阵,这就称为把矩阵A对角化。假设已经找到可逆矩阵P,使P-1AP = Λ为对角阵,P应满足以下关系: 把P用其列向量表示为P=(p1,p2,…,pn,),由P-1AP = Λ,得AP = PΛ,即

A

(

p

1

,

p

2

,

,

p

n

)

=

(

p

1

,

p

2

,

,

p

n

)

[

λ

1

λ

2

λ

n

]

=

(

λ

1

p

1

,

λ

2

p

2

,

,

λ

n

p

n

)

,

A(p_1,p_2,\cdots,p_n)=(p_1,p_2,\cdots,p_n)\begin{bmatrix} \lambda _1 & & & \\ & \lambda _2 & & \\ & & \ddots & \\ & & & \lambda _n \end{bmatrix}=(\lambda _1p_1,\lambda _2p_2,\cdots,\lambda _np_n),

A(p1​,p2​,⋯,pn​)=(p1​,p2​,⋯,pn​)⎣⎢⎢⎡​λ1​​λ2​​⋱​λn​​⎦⎥⎥⎤​=(λ1​p1​,λ2​p2​,⋯,λn​pn​),于是有

A

p

i

=

λ

i

p

i

Ap_i=\lambda _ip_i

Api​=λi​pi​可见λi是A的特征值,而P的列向量pi就是A的对应于特征值λi的特征向量。定理1:n阶矩阵A与对角阵相似(即A能对角化)的充分必要条件是A有n个线性无关的特征向量。推论:如果n阶矩阵A的n个特征值互不相等,则A与对角阵相似。求矩阵A的100次幂:求出A的特征值;求出正交矩阵P;由P-1AP = Λ得A = PΛP-1,故A100 = PΛ100P-1。

对称矩阵的对角化

定理1:对称阵的特征值为实数定理2:设λ1,λ2是对称阵A的两个特征值,p1,p2是对应的特征向量,若λ1≠λ2,则p1,p2正交。 证明:λ1p1=Ap1,λ2p2=Ap2,λ1≠λ2。因A对称,故

λ

1

p

1

T

=

(

λ

1

p

1

)

T

=

(

A

p

1

)

T

=

p

1

T

A

T

=

P

1

T

A

\lambda _1p_1^T=(\lambda _1p_1)^T=(Ap_1)^T=p_1^TA^T=P_1^TA

λ1​p1T​=(λ1​p1​)T=(Ap1​)T=p1T​AT=P1T​A,于是

λ

1

p

1

T

p

2

=

P

1

T

A

P

2

=

p

1

T

(

λ

2

p

2

)

=

λ

2

p

1

T

p

2

\lambda _1p_1^Tp_2=P_1^TAP_2=p_1^T(\lambda _2p_2)=\lambda _2p_1^Tp_2

λ1​p1T​p2​=P1T​AP2​=p1T​(λ2​p2​)=λ2​p1T​p2​,但λ1≠λ2,故

p

1

T

p

2

=

0

p_1^Tp_2=0

p1T​p2​=0,即p1与p2正交。定理3:设A为n阶对称阵,则必有正交阵P,使P-1AP = PTAP = Λ,其中Λ是以A的n个特征值为对角元的对角阵。 证明:因为任意矩阵都与上三角矩阵相似,设A = P-1BP,B为上三角矩阵,AT = PTBT(P-1)T,因为A为对称阵,即AT=A,所以PTBT(P-1)T = P-1BP,因为P为正交阵,即P-1 = PT,所以BT = B,即B为对称阵,因为B是上三角矩阵,所以B是对角阵。推论:设A为n阶对称阵,λ是A的特征方程的k重根,则矩阵A-λE的秩R(A-λE) = n-k,从而对应特征值λ恰有k个线性无关的特征向量。 证明:对称阵A与对角阵Λ=diag(λ1,λ2,…,λn)相似,从而A-λE与Λ-λE=diag(λ1-λ,λ2-λ,…,λn-λ)相似。当λ是A的k重特征根时,λ1,λ2,…,λn这n个特征值中有k个等于λ,从而对角阵Λ-λE的对角元恰有k个等于0,于是R(Λ-λE) = R(A-λE) = n-k。

对称阵A对角化的步骤

求出A的全部互不相等的特征值λ1,λ2,…,λs,它们的重数依次为k1,k2,…,ks(k1+k2+…+ks=n)。对每个ki重特征值λi,求方程(A-λiE)x=0的基础解系,得ki个线性无关的特征向量。再把它们正交化、单位化,得ki个两两正交的单位特征向量。因k1+k2+…+ks=n,故总共可得n个两两正交的单位特征向量。把这n个两两正交的单位特征向量构成正交阵P,便有P-1AP = PTAP = Λ。注意Λ中对角元的排列次序应与P中列向量的排列次序相对应。

【例】设

A

=

[

0

1

1

1

0

1

1

1

0

]

A=\begin{bmatrix} 0 & -1 & 1\\ -1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix}

A=⎣⎡​0−11​−101​110​⎦⎤​,求一个正交阵P,使P-1AP = Λ为对角阵。 解:

A

λ

E

=

λ

1

1

1

λ

1

1

1

λ

=

r

1

r

2

1

λ

λ

1

0

1

λ

1

1

1

λ

=

c

2

+

c

1

1

λ

0

0

1

1

λ

1

1

2

λ

=

(

1

λ

)

(

λ

2

+

λ

2

)

=

(

λ

1

)

2

(

λ

+

2

)

,

\left | A-\lambda E \right |=\begin{vmatrix} -\lambda & -1 & 1\\ -1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{vmatrix}\xlongequal{r_1-r_2}\begin{vmatrix} 1-\lambda & \lambda -1 & 0\\ -1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{vmatrix}\xlongequal{c_2+c_1}\begin{vmatrix} 1-\lambda & 0 & 0\\ -1 & -1-\lambda & 1\\ 1 & 2 & -\lambda \end{vmatrix} \\=(1-\lambda)(\lambda ^2+\lambda-2)=-(\lambda -1)^2(\lambda +2),

∣A−λE∣=∣∣∣∣∣∣​−λ−11​−1−λ1​11−λ​∣∣∣∣∣∣​r1​−r2​

∣∣∣∣∣∣​1−λ−11​λ−1−λ1​01−λ​∣∣∣∣∣∣​c2​+c1​

∣∣∣∣∣∣​1−λ−11​0−1−λ2​01−λ​∣∣∣∣∣∣​=(1−λ)(λ2+λ−2)=−(λ−1)2(λ+2),求得A的特征值为λ1 = -2,λ2 = λ3 = 1.对应λ1 = -2,解方程(A + 2E)x = 0,由

A

+

2

E

=

[

2

1

1

1

2

1

1

1

2

]

r

[

1

0

1

0

1

1

0

0

0

]

,

A+2E=\begin{bmatrix} 2 & -1 & 1\\ -1 & 2 & 1\\ 1 & 1 & 2 \end{bmatrix}\overset{r}\sim \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix},

A+2E=⎣⎡​2−11​−121​112​⎦⎤​∼r⎣⎡​100​010​110​⎦⎤​,令x3=1,得基础解系

ξ

1

=

[

1

1

1

]

\xi _1=\begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}

ξ1​=⎣⎡​−1−11​⎦⎤​,将ξ1单位化,得

p

1

=

1

3

[

1

1

1

]

p_1=\frac{1}{\sqrt{3}}\begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}

p1​=3

​1​⎣⎡​−1−11​⎦⎤​。对应λ2 = λ3 = 1,解方程(A - E)x = 0,由

A

E

=

[

1

1

1

1

1

1

1

1

1

]

r

[

1

1

1

0

0

0

0

0

0

]

,

A-E=\begin{bmatrix} -1 & -1 & 1\\ -1 & -1 & 1\\ 1 & 1 & -1 \end{bmatrix}\overset{r}\sim \begin{bmatrix} 1 & 1 & -1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix},

A−E=⎣⎡​−1−11​−1−11​11−1​⎦⎤​∼r⎣⎡​100​100​−100​⎦⎤​,令x2=1,x3=0得基础解系

ξ

2

=

[

1

1

0

]

\xi _2=\begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}

ξ2​=⎣⎡​−110​⎦⎤​, 令x2=0,x3=1得基础解系

ξ

3

=

[

1

0

1

]

\xi _3=\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}

ξ3​=⎣⎡​101​⎦⎤​。将ξ2,ξ3正交化: 取

η

2

=

ξ

2

\eta _2=\xi _2

η2​=ξ2​,

η

3

=

ξ

3

[

η

2

,

ξ

3

]

η

2

2

η

2

=

[

1

0

1

]

+

1

2

[

1

1

0

]

=

1

2

[

1

1

2

]

\eta _3=\xi _3-\frac{\left [ \eta _2,\xi _3 \right ]}{\left \| \eta _2 \right \|^2}\eta _2=\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}+\frac{1}{2}\begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}=\frac{1}{2}\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}

η3​=ξ3​−∥η2​∥2[η2​,ξ3​]​η2​=⎣⎡​101​⎦⎤​+21​⎣⎡​−110​⎦⎤​=21​⎣⎡​112​⎦⎤​将η2,η3单位化,得

p

2

=

1

2

[

1

1

0

]

,

p

3

=

1

6

[

1

1

2

]

p_2=\frac{1}{\sqrt{2}}\begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix},p_3=\frac{1}{\sqrt{6}}\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}

p2​=2

​1​⎣⎡​−110​⎦⎤​,p3​=6

​1​⎣⎡​112​⎦⎤​。将p1,p2,p3构成正交矩阵

P

=

(

p

1

,

p

2

,

p

3

)

=

[

1

3

1

2

1

6

1

3

1

2

1

6

1

3

0

2

6

]

P=(p_1,p_2,p_3)=\begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}

P=(p1​,p2​,p3​)=⎣⎢⎡​−3

​1​−3

​1​3

​1​​−2

​1​2

​1​0​6

​1​6

​1​6

​2​​⎦⎥⎤​有

P

1

A

P

=

P

T

A

P

=

Λ

=

[

2

0

0

0

1

0

0

0

1

]

P^{-1}AP=P^{T}AP=\Lambda =\begin{bmatrix} -2 & 0 & 0\\ 0 & 1 & 0\\ 0 &0 & 1 \end{bmatrix}

P−1AP=PTAP=Λ=⎣⎡​−200​010​001​⎦⎤​

相关推荐

沙龍 (聚會)
365bet线上攻略

沙龍 (聚會)

📅 07-14 👍 667
胡萝卜怎么切 ?别急,教你4种胡萝卜基础切法,厨房新手必备
吴奇隆英文名Nicky Wu,Nicholas Wu
日博best365下载

吴奇隆英文名Nicky Wu,Nicholas Wu

📅 08-05 👍 92
天之蓝42度多少钱一瓶 天之蓝42度价格表一览
日博365登录网址

天之蓝42度多少钱一瓶 天之蓝42度价格表一览

📅 07-15 👍 56
三星s6进水维修多少 , 三星s6买了一年多冲电要六时用不到半天,去维修店说让换主板800,不会
B站如何清除粉丝
日博best365下载

B站如何清除粉丝

📅 08-15 👍 890